Fatty acid composition of brain capillary endothelial cells: effect of the coculture with astrocytes.

نویسندگان

  • C Bénistant
  • M P Dehouck
  • J C Fruchart
  • R Cecchelli
  • M Lagarde
چکیده

We have investigated the fatty acid composition of brain capillary endothelial cells cultured alone or in coculture with astrocytes, using an in vitro model in which endothelial cells and astrocytes were grown from one part of a filter to another. We found that the fatty acid composition of the cocultured cerebral endothelial cells was markedly different from that of non-cocultivated endothelial cells. The most striking difference was the increase of arachidonic acid (20:4n-6) at the expense of its precursor, linoleic acid (18:2n-6). Similar modifications were found for the n-3 family of fatty acids with an increase of docosahexaenoic acid (22:6n-3) at the expense of its precursors, but the differences were less than within the n-6 fatty acids. These changes induced by the coculture were observed only in endothelial cell phospholipids, especially the phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine classes, but were not detected in phosphatidylinositols and in other lipid classes. Only the composition of the n-3 series fatty acids was altered in another capillary endothelial cell type (from adrenal cortex) cocultured with astrocytes under the same conditions. The fatty acid changes observed might be biologically relevant as they tended to make the fatty acid composition of the brain capillary endothelial cells more closely resemble that of brain microvessels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cerebral capillary endothelial cell mitogenesis and morphogenesis induced by astrocytic epoxyeicosatrienoic Acid.

UNLABELLED Background and Purpose- Epoxyeicosatrienoic acids (EETs) are products of cytochrome P450 epoxygenation of arachidonic acid. We have previously demonstrated that astrocyte-conditioned medium induced mitogenesis in brain capillary endothelial cells. The goals of the present studies are to further define the mechanism through which this can occur and to confirm that EETs are derived fro...

متن کامل

Upregulation of the low density lipoprotein receptor at the blood-brain barrier: intercommunications between brain capillary endothelial cells and astrocytes

In contrast to the endothelial cells in large vessels where LDL receptors are downregulated, brain capillary endothelial cells in vivo express an LDL receptor. Using a cell culture model of the blood-brain barrier consisting of a coculture of brain capillary endothelial cells and astrocytes, we observed that the capacity of endothelial cells to bind LDL is enhanced threefold when cocultured wit...

متن کامل

P 89: Reduction of Neuroinflammation in Epilepsy by Using Stem Cells Derived Astrocytes

Epilepsy is neurological disorders that afflict many people around the world with a higher prevalence rate in children and in low income countries. Temporal lobe epilepsy (TLE) is result from hippocampal sclerosis is a neurological disorder with difficult treatment. Stem cells can transform into any type of cells such as glial cells, consequently stem cells can use for medical treatment. Stem c...

متن کامل

Transforming growth factor-beta mediates astrocyte-specific regulation of brain endothelial anticoagulant factors.

BACKGROUND AND PURPOSE Astrocytes are potent regulators of brain capillary endothelial cell function. Recently, astrocytes were shown to regulate brain capillary endothelial expression of the fibrinolytic enzyme tissue plasminogen activator (tPA) and the anticoagulant thrombomodulin (TM). To study the mechanism of this process, we examined the hypothesis that astrocyte regulation of endothelial...

متن کامل

Transforming Growth Factor-b Mediates Astrocyte-Specific Regulation of Brain Endothelial Anticoagulant Factors

Background and Purpose—Astrocytes are potent regulators of brain capillary endothelial cell function. Recently, astrocytes were shown to regulate brain capillary endothelial expression of the fibrinolytic enzyme tissue plasminogen activator (tPA) and the anticoagulant thrombomodulin (TM). To study the mechanism of this process, we examined the hypothesis that astrocyte regulation of endothelial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of lipid research

دوره 36 11  شماره 

صفحات  -

تاریخ انتشار 1995